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in our previous paper we introduced the multi-scale method, a seli-
consistent plasma simulation technique that allowed particles to have
independent timesteps. Here we apply the method to one-dimensional
electrostatic bounded plasma problems and demoenstrate a significant
reduction in computing time. We describe a technique to allow for
variable grid spacing and develap consistent boundary conditions for
the direct implicit method. Also discussed are criteria for specifying
timestep size as a function of position in phase space. Next, an analyti-
cally solvable sheath problem is presented, and a comparison 1o simula-
tion results is made. Finally, we show results for an ion acoustic shock
front propagating toward a conducting wall.  © 1993 Academic Press, Inc.

1. INTRODUCTION

Plasmas embody a wide range of space and time scales.
For example, the important time scales for a collisionless
and unmagnetized plasma can range from the electron
plasma period to the ion transit time. Likewise, relevant
spatial scales can be as small as an electron Debye length or
as large as the entire system tength. Conventional explicit
particle-in-cell { PIC) simulation is restricled by the timestep
constraint o, 41 < 2 for numerical stability (w, is the elec-
tron plasma frequency and 4t is the timestep size); hence it
is fimited to studying microscopic plasma phenomena.
More recently, direct implicit (D1} methods were developed
[2-57; these relax the w,, At restraint for stability, allowing
particle simulation of large time and space scale physics.
With the DI method one still has to control 4¢ and the grid
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cell size Ax to accurately resolve the relevant physics. Two
important limits on 47 and 4x are

2

IA:<51, (1)
Ax

7 <en (2)

where ¢, and ¢, are of order unity. X is the characteristic elec-
tric field scale length (A" = §, E/E), and v is a characteristic
velocity of the particles. There are other constraints on
accuracy as well (e.g., @ 4t < ¢) and these will be discussed
later in Section 5. Inequality (1) ensures that particles sam-
ple the spatial field variation accurately, and Inequality (2)
ensures adequate spatial resolution of the ‘grid quantities,
These two constraints for resclution of the physical
phenomena in time and space couple Ax and 41

Il the characteristic ficld scale length 4 is small in a local
region, but large over the majority of the system length, one
must still use the A7 corresponding to the smallest 1 when
using conventional PIC methods. An example of such an
inhomogeneous system is one with a boundary layer (or
sheath). In the sheath region, the relevant scale length is the
electron Debye length A,.. Using Inequality (1) with the
thermal velocity for electrons vy, as a characteristic velocity,
we require that w,, 4f <e&,. This is a global constraint on 4¢
for all the particles throughout the entire plasma system,
even though the bulk region may be quiescent and have
much weaker field gradients. For such cases, the DI method
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offers no advantage in computing time over the explicit par-
ticle methods. In fact the DI method has the disadvantage
of being more complex and having a larger computing
overhead.

We can take advantage of this localized disparity in time
and space scales by moving particles in different regions of
phase space with different Ar's. The At variation could, for
example, be specified using a criterion such as Inequality
(1). We term our technique of varying At among the par-
ticles the multi-scale method [17. This is discussed further in
Section 2.

More specifically, this paper deals with applying the
multi-scale technique to bounded plasma problems.
Bounded systems are naturally suited for the multi-scaie
method because the sheath that forms at the wall is a short
space and time scale structure that may significantly affect
the bulk plasma. This bulk behavior would otherwise be
dominated by relatively longer space and time scales. One
goal is to understand the interaction between the bulk
plasma and the sheath.

The model is collisionless, clectrostatic, unmagnetized,
one dimensionai, and bounded, with kinetic ions and elec-
trons. Figure 1 shows a schematic of the bounded multi-
scale simulation. The right boundary is a conducting wall
that absorbs all particles that come in contact with it
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At x=0 there is a symmetry plane, where particles are
reflected. We specify an initial phase space distribution
function: f(x, v, t=0). To test the numerics of both the
multi-scale method and the DI boundary conditions we use
the following test problem: cutoff Maxwellian electrons at
x =0, and fixed (or infinitely massive) ions. The system has
an analytic solution, so the run may be started from equi-
librium. This problem provides a benchmark for the fast
time scale electron sheath dynamics. We present results
from two bounded problems: the simulation of the sheath
problem discussed above, and the simulation of an ion
acoustic shock propagating toward an absorbing con-
ducting wall. In the latter case, computing time was reduced
by a factor of nine relative to the conventional technique
with one fixed 41.

In Section 2 the multi-scale method is reviewed. In
Section 3 our technique for allowing variable grid spacing is
outlined. In Section 4 a consistent treatment of the collector
sheath boundary using the DI method is presented. In
Section 5 we discuss the criterion for specifying particle
timesteps. In Section6 we outline the analytic sheath
problem to be modeled. Finally, in Section7 we show
results from the bounded muiti-scale simulation for the
two bounded test problems with significant savings in
computing time,

CONDUCTING WALL
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FIG. 1.

Schematic of the bounded multi-scale plasma simulation. The case shown has six d¢ groups. Particles change 4z as they move in phase space

and cross the doited lines. The solid line represents the separatrix ».(x), where inside the particles are trapped and outside the particles hit the wall and
are absorbed. The ions are fixed and the ¢lectrons have a cutoff Maxwellian distribution> The conducting wall is left floating at V.
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2. THE MULTI-SCALE METHOD

The objective of the multi-scale method is to model
macroscopic (w <€ w,, 4> 4,) plasma phenomena globally,
while also accurately treating short time (~w, !y and short
space scales {~4,) in local regions where microscopic
physics is important. We accomplish this by allowing
groups of particles to move at different A4¢’s. The multi-scale
method is necessarily implicit to allow for w, 4¢3 1 in the
bulk plasma. Each group of particles G,, is pushed every 2™
timesteps using A4¢,,=2" 6, m=0, 1, 2, ..., m_,,,, where & is
the smallest timestep size. To avoid having occasional
timesteps {(every 2™), where we move all the particles in the
group G, at once, we define subgroups of group &, called
blocks B' . Given a group G,,, there are 2™ blocks B’ ,
where /=0, 1, 2,.., (2" —1). Each block in a group is
moved at a different timestep. We move a block B!, at
timestep n, with t =n ét, when

(r)ymod(2™)=1 3)
The free streamed charge density § and effective suscep-
tibility y are linearly interpolated at time level # if the block
is not moved. Each block has a pair of associated j arrays
so that interpolation in time is possible. There are
(2¢mmax+ 1) _ 1) blocks so that for large m_,, memory space
and computing overhead for these interpolations become
items of concern. A more detailed description of the
multi-scale method is given in Ref [1].

3. YARIABLE GRID SPACING

In conventional one-dimensional particle codes, the
cpu time for calculation of field quantities is usually trivial
compared to the time used for advancing particles. Hence,
having a fine grid throughout the entire system is not
usually problematic. However, when using the multi-scale
algorithm there are N(2"=*'}—1) interpolations of the
charge density for each species each timestep, where N is the
number of grid cells. Thus, reducing the number of grid cells
can greatly reduce the computing overhead. In addition,
nonuniform grid spacing permits control of ¢ At/4x when
At is varied to avoid the associated errors due to numerical
heating and cooling [6]. Another benefit is the reduction of
noise in regions where fine resolution is not necessary. The
noise associated with using a finite number of particles
is reduced because increasing the grid spacing increases
the number of particles per grid cell, which reduces the
statistical fluctuations in the particle density.

To begin setting up the mesh, the number of grid cells ¥

is specified as an input parameter. We also specify the

spatial distribution (or density) function g(x), 0<x </,
which is proportional to the number of grid cells per unit
length. Then g(x) is numerically integrated and normalized,
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producing a cumulative distribution function G{(x), with
G(x=0}=0and G(x= L)=1, Next, a uniform distribution
of points, y;= j/N, is inverted to produce the grid point
locations, x,=G~'(y,). Linear -interpolation is used to
calculate G~". This procedure is analogous to loading a
given distribution of particles in a conventional PIC code.
By using this technique we efficiently produce a variable
grid when given the “density” of grid cells needed as a
function of x.

Using simplified differencing, the field equation for the DI
method is [24], 0.(l +y)d,¢= —p, where we have set
£ =1, or equivalently, we have used units where g — g/,.
Using conservation of electric flux, we arrive at the finite
difference equation for the one-dimensional case,

2 {(1+Xj+1f2)¢_ _I:(1+Xj+1f2
(dx;_1p+4dx;090) U 4% it Ax;,0p
(L+x12) (1+x,_1p)
+ — 0. =—0. 4
= | g ey, e,

where we define 4x;, \p=x;,,—X;, Y, 1p= %(Xpr 1+ 4G
andj=1,2,3,.., J+ 1. Equation (4} is tridiagonal; hence it
is easily solved. This equation reduces to the usual finite
difference scheme for constant 4x. The boundary conditions
used are discussed below.

4. BOUNDARY CONDITIONS FOR THE DI METHOD

In this section we develop consistent boundary condi-
tions for the DI method at an electrostatically floating piate.
We will assume the reader has knowledge of the DI method
[2-4]. Although our model is one dimensional, we will use
vector notation in this section because the formulation of
the boundary conditions can be generalized to higher
dimensions. Because the “free streaming” charge density f is
known and not the charge density at the future time level
p" ! we need to extend the conventional method [ 7, 8] for
treating boundaries in explicit models. At the wall there is a
surface charge a. This causes a discontinuity in E at x=1L,
making 4, ¢ ill-defined at that point. Hence, we avoid using
a finite difference approximation for d,¢ at x = L. This is
done by letting the grid be “open™; that is, it becomes
infinitesimal close to the wall, but does not include it.
Then Gauss’ law is used to obtain the following boundary
conditions [7, 8]:

1
Bx=L)=—

1 dx
E(¢J_¢J+l)+TPJ’+1'

)
{¢J_¢J+1)+7xp.l+l+a’ (5)

(6)

Eppy=
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For variable grid spacing, Ax=4x;,,,. In higher
dimensions, one might make the assumption that the
tangential component of E, |, is small compared to the
perpendicular component and use Egs. (5) and {6) for the
perpendicular component. For the tangential field one can
use E{x=L}=0.

The above boundary conditions are ¢xpressed in terms of
Ps+1 and o at the future time level n + 1; however, these
values are not known. We need Eqgs. (5) and (6) in terms of
the intermediate values 7, , and . The wall charge at the
future time level is calculated from

o= +do. (7)

Next, we write d¢ in terms of dx, which is given in
Refs. [2-47 as dx = f(g/m) p A E,

00 =P, 10X, R,

(8)
(9)

=Ys1Eyyq -,
where y = f(g/m) p A¢* and # is the unit vector normal to
the surface. Using Gauss’ law and the fact that E,_ | || fi, we
obtain E, _, in terms of g,

E, = ~0afy (10)
substituting this value into Eq. (9) and inserting the result
into Eq. {7}, we arrive at

R A— (11)
(L4 xsi1)

which can now be used in Eq. (5).

In a similar fashion, we calculate p,, ; at # + [, which is
also needed for the boundary conditions Egs. (5) and (6),

Pri1=Pre1+00,005 (12)

op is given in Refs. [2-4] as 6p = —V - (y E). Evaluating this
at J+ | we arrive at

5pJ+1=_[V_Lx]J+lEJ+1_XJ+IPJ+19 (13)

where V| is /- V, the gradient perpendicular to the wall. In
the one-dimensional case we use a one-sided difference for
V,, because this is the best we can do. This produces p at
n+ 1 in terms of 3:

2(1J+1_ZJ+1/2) g
4x (T+x,.4)°

ﬁf+1
= +
Pryt T+2,.,

(14}

We use x,,12=32(x,+xs.,) for convenience. In all the
simulations presented, particles are demoted to the smallest
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At group when they come close to the wall, making y, ., <1
and g,,,~j,,,. Therefore, in our particular application,
the corrections (Jp and da) are small.

5. TIME STEP CONTROL

Since particles are allowed to move with different time
increments depending on their locations in phase space, we
need to develop a criterion for demoting/promoting
particles into blocks with larger/smaller timestep sizes. We
choose a particle’s At based on the local truncation error
made in the particle advance. The local truncation error
gives a measure of how much error is made in the particle
advance from one timestep to the next. If this error is too
large, we reduce Ar. If this error is smaller than the specified
tolerance, then we increase At accordingly to increase the
computational efficiency.

5.1. Error Analysis

For the particle advance, we use the “D17 implicit scheme
[2-5]. An analysis of the local truncation error of the D!
scheme is given in the Appendix. In this section we analyze
the local truncation error of the leapfrog particle advance
because it is analogous to the error calculation of the D1
scheme, but is much more straightforward and also gives
the same timestep control criteria. The analysis of the D1
scheme has added complexity because of the recursive
filtering in time of the acceleration and the evaluation of the
acceleration at an intermediate location (see the Appendix).
The leapfrog scheme that we will discuss in this section
is {7]

Un+1/2=u’f*”2-|—dfan(xn)s (15)

X*Tl=x" g Ayt (16)

where a is the acceleration: a” = (g/n} E"(x"). Eliminating v,
the scheme can be rewritten as

xn+1 _2xn+xn—1
ae

= a(x").

(17)

We define the quantity x7*' as the value of x"*' obtained
from the scheme using the exact values x{(t"), x("~!), and
a(x(r™), r") for x", x" ', and @". Then we define the local
truncation error as the difference between the predicted and
actual values: d"*'=x7+! — x(r"*!) [10]. Using x"*' =
x("*"y+d"*! and substituting the exact quantities into
Eq. (17) we obtain

(@Y =2+ x(" ) RS
oTE —a(x(r),f)—I;d . (18)
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Using Taylor series the left-hand side becomes X"+
(417/12) x®(1") + O(4r*); hence, the local truncation error

s

d"+ = — At L a(x", ") + O(415). (19)
In practice we do not use Eq. (17) to advance the particles.
Rather than starting with x"~' and x” and advancing to
x"* 1 as implicitly assumed in Eq. (17), we use v"~ 2 and x”
to advance to v”*'” and "*', For example, one would
start the particle motion with x°=x(¢r=0) and some
approximate value for v"~'? as initial conditions. Sub-
stituting Eq. (15} into Eq. (16) and the exact values into the
scheme except for v”~ ', we obtain

Cx(T ) = x() + A1V 4 A alx(17), ) —d" L (20)
Depending on what value of »"~'? is used in Eq. (20), we
obtain a different error term. If we use just the right value:
"2 = p(1") - (A1/2) a(x("), 1) + (41316) d(x(1"), "), we
maintain the same order error as in Eq. (19). However, if we
use "~ Y2 =yp(1")— (4t/2) a(x(r"), "), we obtain a lower
order error. At n =), this is the value of v"~ '/ that is typi-
cally used for starting the particle motion. Using this value
for "~ ! and expanding x(:"*!) about #” we obtain

A" = — A ta(x", ")+ O(4t*). (21)

In order to control the error in the particle advance we will
keep d"*' small compared to the other two terms in
Eq. (20) that cause a change in x. Assuming that the second
and third terms on the right-hand side of Eq. (20) do not
cancel and that they are not zero, we require

E
Az‘]—z‘q,, (22)
£ g —‘ <&, (23)
m v

for control of accuracy. ¢, and ¢, parameterize the amount
of error made per timestep. If we assume sinusoidal
variation in E then Eq. (22) reduces to the familiar “kv 4¢”
restriction [3-5] {w is usually neglected):

lkv —w| dt <. (24)
Assuming |8,E| <|vd,E|, Inequality (23) reduces to the
“0;ap 41" restriction [3-5]:

£ AP |3, E| <e,. (25)
m

In our application, it is the particle transit time through
the sheath, and not the time-dependent variation of the
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field, that is the most limiting (the kv At term in
Inequality (24)). The kv Ar <e, criterion is important for
our physical applications, but it is difficult to implement
adaptively because the statisticai fluctuations in £ make k =
0. E/E a difficult quantity to determine on the grid. For
example, if £ and 8, E are fluctuating about zero (which is
typical), there can be spatial locations where E~0 and
0, E +0, producing large values of k. These artificially large
values of k are produced by the statistical noise rather than
the physics of interest. Inequality (25) could be used for
timestep control since 4, £ could be calculated on the grid,
although it may aiso be a .noisy quantity. Smoothing in
space and/or time would probably be necessary for most
applications.

5.2. Implementation

The way particle 4r group demotion/promotion is
implemented depends largely on the physics being modeled.
For the sheath problem to be presented in Section 7.1, the
region that needs fine space-time resolution is stationary so
we do not need adaptive timestep control. The technique
that we use is to look ahead Cv A1, where C is a constant
and see if the particle will enter a spatial region violating
Eq. (25). This produces lines in phase space with slope C At
that are the boundaries between A¢ groups. We choose
C' 22 so that a particle will be promoted up to smaller Az
soon enough to “keep up” with the timestep constraint.
That is, C > 2 ensures that a particle will only need to be
promoted one group per advance cycle as required by the
multi-scale algorithm [1]. Our template for dividing up
phase space between Ar groups is kept symmetric about
v=10. This demotion/promotion scheme is represented
schematically in Fig. 1. The dashed lines represent
boundaries between the different At groups. The At group
boundaries (or A¢ contours) are shown in Fig. 2C for the
actual sheath test runs presented in Section 7.1. The
v At look ahead produces a slowly varying y\spatially, which
allows a gradual transition from the “implicit region”
(w, At > 1), to the “explicit region” (w, 4¢ < 1). Although
admittedly somewhat ad hoc, this template for breaking up
phase space into different Ar groups works quite well.

For the propagating shock front problem to be presented
in Section 7.2, we used the same template for the sheath
region, but in addition introduced horizontal boundaries
between groups, thereby allowing resolution of the shortest
wavelengths of interest in the bulk (kv 4t < g). Contours of
At versus location in phase space are shown in Fig. 3 for the
clectrons in the shock test run. The results of the shock test
problem will be discussed in more detail in Section 7.2. This
template gave us the greater gains in computing time and
better control of accuracy than any of several others [9]
which were tested.

When demoting particles (smaller to larger timestep
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FIG. 2. Snapshot of phase space at 1 = 100 for the sheath test problem.
{A) Coherence in phase space caused by immediate demotion when
particles cross At group boundaries. (B) Delayed demotion showing no
coherence. (C) 4t contours in phase space showing boundaries between At
groups which are fixed in time. Values shown are normalized by the
smallest timestep 2.
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FIG. 3. Electron At{x,y) group boundaries for the shock test
problem. Values shown are normalized by the siftallest timestep d1.

sizes), care must be taken to keep from introducing spurious
structure into phase space. Assuming no electric field, as a
particle crosses a group boundary (demoted from group m
to m + 1), it moves v 4¢,, from the preceding advance; then
it moves 2v 4r,,. This causes a “wedge” of particles in phase
space which previously crossed the group boundary with
displacement v A4t,, to move 2v 4¢,, on the next advance,
leaving an empty wedge v 4t¢,, in width, The affect on phase
space is shown in Fig. 2A for the sheath test problem
discussed in Section 7.1, This phase space structure did not
significantly affect our simulation resuits presented in Sec-
tion 7 (except for the appearance of the phase space scatter
plots). The error is alleviated by delaying the promotion of
half of the particles (those with odd array index) until the
next timestep, This delay fills out the empty wedge in phase
space and removes the coherence, as shown in Fig. 2B.

6. PHYSICS OF THE SHEATH PROBLEM

In this section we develop an analytically solvable
equilibrium sheath model which is used to benchmark the
bounded multi-scale code. We assume fixed background
ions and model only the fast time scale eiectron motion at
the sheath. There is no plasma flow to the plate; hence,
no plasma source is necessary for an equilibrium. The
distribution function for the electrons at the center of
the system f(x=10, v} is specified as a cutoffl Maxwellian
symmetric about =0,

Ao
2 /2 vy erf((\/2/2)vo/v7))
frn=g  xen{-354 B <o,
0; jv} Z o x),

(26)
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where vy=v.(x=0), no=n,(x=0), and mv2=T are
specified as input parameters; v,.(x) is the cutoffl velocity of
the electrons with v,(x)20. Equation (26} satisfies the
Vlasov equation at steady state. The ions are assumed to be
uniform and fixed: n,(x) = n,. With 8/t =0, we have energy
conservation which allows calculation of the cutoff velocity
in terms of the potential:

mri(x) — ed(x) = tmv}, (27)

We can now write Poisson’s equation with the following
dimensionless variables u = (ﬁ/Z)(u/vT) and ¢ =ed/T as

L e“”erf\/uﬁ+dl_1} (28)
dx? _Qifj erf(o) ’

We can solve this ordinary differential equation numeri-
cally as an intial value problem starting at x=L and
“advancing” backwards to x =0. To do this when we need
to know the two boundary conditions: y(x=1L) and
(dr/dx)| - .. We start at x = L because of difficulties with
convergence starting at x =0. The first boundary condition
is obtained using Eq. (27) with v (x = L) =0,

Y(x=L)= —ug, (29)

where 1y = u(vy). Next, we multiply Eq. (28) by diy/dx, and
use

14 (%) AN

2dx\dx]  dx? dx’

then integrate over the system length to obtain the second
boundary condition,

dp _ﬁ{jww eV ol JEr Y dw,}‘”
del. o, 4p U erf(ug) '
(30)
4] T
pxr  -1b
_2_ .
0 20 a0 80 80 100

X

FIG. 4. Numerical solution of the electrostatic potential, which gives
the initial conditions for the sheath test problem.
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TABLE I

Parameters for Sheath Test Run

gim= -1 w,=1 Ap=1 ve=1 v,=2

L=100 Ny=40,000 4Ax=025-4 =01 G=1,64

Equation (28) can now be solved using the boundary condi-
tions, Eqgs. {29) and {30). We use the Nystrdm method for
numerically solving second-order ordinary differential
equations [10). Knowing ¢{x) we load the particles
{electrons) according- to Eq. (26) and we then can start
the simulation off from this equilibrium. Figure 4 shows
the numerical solution of the steady-state electrostatic
potential Eq. (28). We will compare this solution to the
time-dependent simulation in the following section.

7. RESULTS FROM THE BMS CODE

A bounded multiscale particle-in-cel! plasma simulation
code, BMS, was developed to test ideas presented here and
in Ref. [1]. “Proof of principle” for the multi-scale method
is shown by making self-consistent runs allowing particles
to change At groups depending on their location in phase
space. We use timestep controi that depends on time, space,
and velocity. Significant gains in computer time are made
over conventional PIC simulations, BMS has the following
features: DI method, bounded, multi-scale, and variable
grid spacing. The BMS particle code is electrostatic,
unmagnetized, and one dimensional.

7.1. Sheath Test

We first test the multi-scale method using the sheath
problem discussed in Section 6. The system is started from
equilibrium with a constant background ion density and the
electron distribution specified by Eq. (26). No source is

3t i
Axix)
21 ]
1+
1
L
Q 20 40 60 80 100

X

FIG. 5. Variable grid spacing: 4x vs x.
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4
A Ppixr -1t
-2} —
0 20 40 60 80 100

B ¢ix) -1}

-2 p

. n 1 i

0 20 40 60 80
x

100

FIG. 6. Snapshots of electrostatic potential versus x at ¢=100:
{A) Multigroup G = 64 case; (B) One-group G =1 case.

present. For comparison, we made two runs, one with one
At group {w, At=0.1) and one with multiple 47 groups
(w, 41=0.1-6.4). The test run parameters are given in
Table I. We use the MKSA units system, but with g, set to
unity. Alternately, the units can be described as dimen-
sionless with length and time normalized by A, and @, '
We define the gain G as the ratio of largest to smallest
timestep size (G =largest At/6t), where dr is the smallest
timestep. Figurc 2B shows a snapshot of the phase space at
t = 100. Figure 2C shows the Ar contours as a function of
(x,v) (or boundaries between the different A: groups).
These contours are fixed in time. Figure 5 shows the
variable grid spacing, 4x versus x as discussed in Section 3.
Figure 6 are snapshots of the electrostatic potentiai for: A
the multigroup G = 64 case and B the one-group G =1 case.
Note that the G=1 (small w, 4¢) run has more short
wavelength fluctuations in the bulk since plasma oscilla-
tions are resolved globaily. Figure 7 is a snapshot of y for
the G =64 case. The magnitude of y gives an idea of how
implicit the spatial region is in the system (x =3w, 4¢°).
Figure 8 is the time history of the total potential drop across
the system (¢(x =L, t)) for A the multigroup & =64 case
and B the one-group G =1 case. The total energy error was
small in both cases (less than 1%). Figures 8A and B show
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20

16
X 12

8

100

FIG. 7. Snapshot of x versus x at =100 for the multigroup G =64
case. For uniform density {which is the case in the bulk region}, x gives an
estimate of how “implicit” the region is.

that the wall potential oscillates at the plasma frequency
about the correct equilibrium value, which is two. We
suggest some causes of these noticeable oscillations. First,
the simulation was not started exactly at equilibrium
because of errors associated with loading the distribution
Equation (26) with a finite number of particles and grid

p 3

1
ol
=]

-2.0 b

-2.4 | i .

Pix =Lt

—2.2} I | |

200 300 400
TiIME

0 100 500

-2.20

400

200 300
TIME
FIG. 8. Time history of the total potential drop for the sheath runs:
(A) Multigroup G = 64 case; (B) One-group G =1 case.

0 100 500
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18]
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1.2}

CPU TIME
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0.2 L L

I 1
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FIG. 9, CPU time versus G for the sheath test problem. G ranges from
1 to 128; the optimum value (minimum cpu time) is at G = 32.

cells. Second, the many particle simulation has time
dependent fluctuations not taken into account in the
equilibrium calculation. Both these differences between the
equilibrium theory and the simulation are accentuated by
the fact that in the sheath region there is a very low particle
density and hence it is more discrete. That is, the simutation
exhibits many-particle behavior rather than continuum
Viasov behavior. 1t is also observed that the potential
gradually drops as a few particles leave the system (about
one every eight o, '), The many particle simulation is
slightly collisional [7], causing particles to diffusec across
the separatrix and hit the wall (see Fig. 1).

Figure 9 shows the cpu time per particle per smallest
timestep in microseconds versus G for eight runs, with G
ranging from one to 128, All calculations of computing time
were done on a Cray-2 supercomputer. In calcuilating the
cpu time we subtracted the time associated with setting up
the initial conditions and performing diagnostics. Note that
there is an optimum value (minimum cpu time) at &G =32.
Beyond this point, the nonvectorized sorting of particles,
along with the interpolation of § in time for each block,
begins to dominate the computer time. Increasing the
number of particles will reduce this effect by increasing the
fraction of cpu time used in the particle advance, Also,
decreasing the number of grid cells will enhance the gain
since (2Umm=+1 1) N interpolations in time of § are made
cach timestep, where N is the number of grid ceils. The
G = 32 run was four times faster than the G=1 run.

7.2. Shock Front Propagating toward a Conducting Wall

As a second test of the bounded multi-scale formulation,
we simulate the propagation of an 1on acoustic shock front
toward a conducting absorbing plate. This problem is
inspired by problems involving transient plasma flow in the
divertor region of a tokamak fusion reactor. The edge layer
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of a diverted tokamak exhibit bursts of MHD activity,
known as edge localized modes (ELMs [11] which produce
(and are characterized by) sudden bursts of plasma flowing
to the divertor region. Our model can be used to study
transient plasma flow along magnetic field lines. We start
with an intial slab of hot dense plasma and a colder low den-
sity background. The details of this flow may be important
to divertor design, since the ion energies directed into the
divertor plate may be greater during such a transient than
at steady state.

The ion acoustic shock has been previously analyzed and
simulated [12, 13]. Mason’s simulations [ 13] used kinetic
ions and isothermal Boltzmann electrons. In our model we
use fuily kinetic electrons with differing temperatures and
also include the boundary effects.

For this test problem, we load as initial conditions a low
density background plasma (component A), and then we
add a high density slab {(component B). Al distributions are
initially Maxwellian, and no source is present. The density
ratio between the two components is 10 {nz/n ). The system
length is 10004, with the dense slab covering two-thirds of
the system length. The temperature ratios are the following:
TE=100T4, TA=T7,and T? =T, where the subscripts
(i, e) specify the species, and the superscripts (A4, B) specify
the component. The parameters for the run are listed in
Table [I. We use the same units as in Section 7.1 (i.e., time
in units of w ' and length in units of 4., in terms of the hot
electron component). This choice of parameters provides a
simulation that is rich with kinetic physics.

We define the thermal transit time from the slab edge
to the wall of the hot densc electrons as: 7%=
(L — Lg,,)/v3, = 400. Figure 10 shows snapshots of the ion
charge density at: A, /=100, the initial expansion; B,
t =400, the dense electron thermal transit time ¢ =1%; and
C, £=2000, the time just prior to when the front hits the
wall. The solid line with the vaiue of 1.1 at x =0 is the total
ion density, the dashed line with the valug of 1.0 at x=01is

TABLEII

Parameters for Sheath Test Run

Ax=025-2 8r=02
Parameters L=1000 L., =600 T=2000
Background @,=0316 qm=—1 vr=01
electrons A N = 100,000 G=32
Background w,=00316 q/m=10.01 v,-=0.01
ions A N =100,000 G=128
Slab w,=1 gfm=—1 vr=1
electrons B N = 300,000 G=32
Slab w, =01 g/m=001 vy=001
ions B N = 300,000 G=128
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the dense slab ion density (component B), and the dashed
line with the value of (.1 at x =0 is the background plasma
ion density (component A). At later times (¢ > 2000), the
front hits the wall and is simply absorbed. Figure 11 shows
snapshots of the spatial profile of the electrostatic potential
at: A, r=100; B, r =400; and C, r= 2000. Figure 12 is the
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A
= J
3 !
B F -
ol oo I
0 200 400 x 600 800 1000
=400
1.5 T ' - T =
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FIG. 10. Snapshots of the charge density for the jons at: {A) r=100;
(B) £ =400; {(C} + = 2000. The solid line is the total density, and the dashed
lines are the two components, the dense ions and the background ions,
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time history of the total potential drop across the system.
For 7= 100 the time elapsed is less than 2. At this point in
time the electrons have not yet reached the wail and the
collector sheath has not yet formed (Fig. 11A)). At r =400,
the time elapsed is t2 and the collector sheath has developed
(Fig. 11B})).
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FIG. 11. Snapshots of the electrostatic potential for the shock problem

at: (A) t=100; (B) + =400; (C) r = 2000.
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FIG. 12, Time history of the total potential drop versus time for the
shock problem.,
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If we assume the electrons are in thermal equilibrium and
obey the Boltzmann relation, then we can use the following
expression for the potential drop across the shock front

46 [137:

edgﬁ: CIn (n4+n3)l

31
T, e (31)

Assuming T,=T?Z?, the value predicted by Eq.(31) is
Ap= —23. We compare this to the measured values:
Ap(1=100) = — 2.5, A¢(t =400) = — 2.3, and A¢{r = 2000) =
— 1.4. With increasing time, the potential drop across the
shock front decreases. We attribute this decrease of 4¢ to
the cooling of the electrons, which is caused by preferential
absorption at the wall of the electrons with highest velocity.
The total potential drop across the system can be crudely
estimated using an expression which is commeonly used for
determining the collector sheath potential drop [14, 15].
First, we assume that the potential is monotonicaily
decreasing. We also assume that the flux of the ions
entering the shock front (where ¢ =0} is the resuit of a
hall-Maxwellian distribution and that the electrons are in
thermal equilibrium. Then we equate the flux of the ions and
electrons at the wall and obtain the following result:

ep(x=L) Pre
Te - tn (UT!')' (32)
Assuming T,=TZ%, the value predicted by Eq.(32) is
#{x=L)= —4.6, which compares well with the values
around 112, For t > 12, the total drop decreases, possibly
due to the decrease in the temperature of the electrons.
Figure 13 shows the dense (component B) ion phase
space at: A, r=100; B, 1 =400; and C, ¢ = 2000. The sound

PARKER ET AL.

speed is ¢,=./T2/m,=0.1 for this run. It is seen from
Fig. 13 that most of the shock region 1ons are accelerated to
velocities » & 1.1-1.5. This agrees reasonably well with the
analysis of Moiseev and Sagdeev neglecting the density of
reflected ions, which predicts that the shock front is moving
at a speed greater than c¢,, but less than l.6c, [16, 17].

t=1G0

ﬂ
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2F ]
v - _
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X

FIG. 13. Snapshots of phase space for the dense slab of ions at:
(A) £=100; (B) £ =400; (C) r = 2000,
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Figure 14 shows the low density background (com-
ponent 4) ion phase space at: A, + = 100; B, 1 =400; and C,
¢t =2000. Figures 13 and 14 show that there is a low density
leading edge of high energy ions with particles accelerated
to velocities as high as 3c,. For ¢ > 2000 the high energy ions
hit the wall and are absorbed. No further high energy ions
are observed.
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FIG. 14. Snapshots of phase space for the background ions at:

(A) £=100; (B) £ = 400; (C} ¢ = 2000.
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Figure 15 shows the hot dense (component B) electron
phase space at: A, 1= 100; B, t =400; and C, 1 =2000 (any
apparent horizontal lines in the phase space are due to
printing errors). At r=100, the electrons have not yet
reached the wall. At =400, the time elapsed is the thermal
transit time rf. At this time, the electrons have reached
the wall and are reflected by the sheath potential drop.
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FIG. 15, Snapshots of phase space for the hot, dense slab of electrons
at: (A) t= 100; (B) £ =400; (C) r = 2000.
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Figure 16 shows the low density background {component A)
electron phase space at: A, r=100; B, +=400; and C,
t=23000. At 1 =100 the electrons in the shock region are
accelerated backwards to a velocity of about —2 (which
is —2v7,). At r=400, more electrons are accelerated
backward through the shock front potential drop and a

t=100

J .“v'\r'.-"-"e‘(‘c':
| o B , . i}
0 200 400 « 600 800 1000
t=400
8 T T T
2k ,

1L |

){,Aw*‘-*”i\f"'ﬁ
N ]
i) .1“ A M ﬁk‘hj
-2 | ‘ '{_.1,\",,\_‘.1#,‘_,__\,_4‘ 4
0 200 400 600 800 1000
t=2000
_{
T
0 200 400 600 800 1000
X

FIG. 16. Snapshots of phase space for the background electrons at:
(A) £=100; (B} 1 = 400; (C) r = 2000,
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convective beam-plasma instability occurs, leading to
the formation of phase space vortices as the instability
saturates. The electrons with v &= + 2 are from the reflection
of left-going particles as they pass through the symmetry
plane at x =0. At s = 2000, the electron phase space begins
to “fill in” {or thermalize) due to turbulence, but there is still
a noticeable empty region.

In all the phase space shapshots discussed above, 20,000
particles were plotted per snapshot. Hence, the density of
dots does not give a comparison of density between the
background A component and the dense slab B component
(which are different scatter plots).

As seen in Fig. 12, there is a sudden drop in the wall
potential at the beginning of the simulation. Because of this
initial transient, we do not begin to demote (to larger Ar)
particles at r=0, but wait a period of time (r=40) and
then gradually demote particles to larger timesteps. This
provides better temporal resoiution of the initial transient.
The timing for this run was 0.18 us per particle per smallest
timestep, including all computation except initial conditions
and diagnostics. There was a gain of nine over the one-group
run (which has a cpu time of 1.65 us per particle per
timestep). The simulation results we present here were
benchmarked against one-group small w,, 4¢(=0.2) run to
the time ¢ = 800 (4000 timesteps). We did not run the one-
group case as long as the multigroup case because of the
computing expense. The one-group run used a total
(including diagnostics and initial conditions) of 2.36 cpu
hours. The multigroup run was run to z=4000 (20,000
timesteps) and used total 1.47 cpu hours. There wasa —3%
change in the total energy for the multigroup run due to
damping from using the DT scheme. '

8. DISCUSSION

We have been successful in applying the multi-scale
method to a sheath problem that is representative of the
typical short time scale physics at a boundaty. We have also
simulated an ion acoustic shock front propagating towards
a conducting wall with a significant reduction in computing
time, The measured cpu time was 0.18 s per particle per
timestep on a Cray-2 supercomputer, which was a gain
of nine over the one-group run. We have implemented
a variable dx grid and developed consistent boundary
conditions for bounded DI simuiations. Also developed
were timestep control criteria, and our prescription for
demoting/promoting particles between At groups. These
criteria were successfully tested in our two examples with
demotion/promotion depending on time, position, and
velocity.

In higher dimensional electrostatic problems with more
complex geometry and boundaries, one could use an
unstructured mesh [18] and control the timestep based on
how quickly a particle crosses the local grid cell. However,
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for the magnetized case the gyrofrequency would still need
to be resolved [ 197, unless a reduced physics model is used
{(e.g, drift-kinetics or gyrokinetics). In the future, it may be
possible to extend the ideas presented in this paper to
electromagnetic implicit simulations [20].

APPENDIX: LOCAL TRUNCATION ERROR OF
THE D1 SCHEME

In this appendix we analyze the local truncation error of
the D1 scheme. This analysis is analogous to that of the
leapfrog scheme given in Section 5.1. There is added com-
plexity in this calculation due to the recursive filtering in
time of the acceleration Eq. (34), and the use of the free
streaming position % for calculation of the acceleration.
Analysis of the stability and accuracy of the D1 scheme in
terms of plasma dispersion is given in Ref [5]. The D1
scheme centered at integer time ievels { 1] is the following:

i"+l=xn+AIU", (33)
&n=%(&n—l+an+l)’ (34)
At
un+1=vn+?(an+an+1), (35}
2
x"+1=,i'"+l+—2— n+1_ (36)

For the DI method we use " "' =g"* (" *!), not a"+' =
a"*+'(x"*"), because we do not know this quantity in
advance of when we use it in Eq. (36). Eliminating v and %
partially, the scheme can be rewritten as

n+l

—2x" 4 x"!
Ar?

e

‘Z — 37

-b.l'—-

In order to completely eliminate X, we use Eq. (36) and
expand about x" %

_ , . AR . i
aﬂfl(iﬂ—'l)=aﬂ‘-r (xﬂ*‘!__zuaﬁr(in!))’

= {1 —é‘; 6xa"_j(x”_")} a" (x" )+ O(414).
(38)

Substituting Eq. (38) into Eq. (37), we can write the scheme
as

n+1

—2x" 4 x !
412

1 ” At nl H—i
—ZZ {1——2-651 (x )}

xa" (x* Y+ 0(d4e). (39)

401
We define the quantity x"*! as x"*! obtained by using
the scheme Eq. (39} with the exact values used for x", x" !,
and a(x"~"), i=—1,0, 1,2, ..., n. Then we define the local
truncation error as d"“— x?*t—x(¢*1) [10]. The
error d"*! is calculated by substituting x{r"~‘) for x"~*
and a(¢" =", x(+"~%) for "~ into Eq. {39), and expanding
about 1"

x(" ) = 2x(" )+ x (7 1)
Ar?
= a(x(t"),

!2
A

")+ 2 a(xn, 1)

x(17}) 0.a(r”, x(1"))

1
(At3)ﬁ dn+l

{40)
where we have assumed n large in calculating the second
and third terms on the right-hand side. Using Taylor series
the left-hand side becomes £"(¢")+ (Ar¥/12) x®I(1") +
O(41%); hence, the local truncation error is

drtt= A {Ha(x", ") —La(1",

+0(48%).

x(1")) 8 calt”, x(1)) }
(41)

We do not use Eq. (37} to advance the particles. Rather
than starting with x"~! and x" and advancing to x"*’ as
delineated in Eq. (37), we use x" and v" to advance to x"*!
and v"*!. For example, one would start the particle motion
with x"=x{t=0) and v*=v(¢=0) as initial conditions.
Substituting Eq. (33) into Eq. (36), and x{¢*) for x", and
again expanding in series about ¢*, we obtain

n+1 n n Atz n n
x("t* D) =x(t"y+ dr v +~2—a(x(t ), )

3

ai . n n
+Ta(x(t ) 17)

4
+ 45 Gataler), ) - 0,atx(e"), 1)

x a{x("), (Y} + O(de®)—d" . (42)
1f we use just the right value for p", we preserve Eq. (41).

However, if " = v(¢"} is used we obtain

3

AL s, x() + 04r),

a+1 _
d 3

(43)

which only differs. from the error obtained from the
leapfrog scheme Egq. (21), by a lactor of two. Therefore,
the same timestep control criteria derived in Section 5.1
{Eqgs. (22)-(25)) still apply for the D1 scheme,
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